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Abstract-The pure twist of an incomplete toroidal ring sector of solid circular cross-section has been
solved by previous investigators. If we impose the requirement that a solution is to be determined such that
it has the capability of being generalized to non-isotropic circular cross-sections and to hollow circular
cross-sections, the only methods available appear to be those of "toroidal elasticity".

The previous solution by Gohner can not be extended to hollow circular cross-sections (toroidal tubes).
The previous solution by Freiberger uses toroidal coordinates which can not be applied readily to
non-isotropic cross-sections nor to circular cross-sections of uniform wall thickness. To overcome these
limitations in the two previous solutions, it is necessary to introduce the coordinate frame of toroidal
elasticity as illustrated in the present paper. The extensions to non·isotropy and to hollow cross-sections
will be demonstrated in two separate follow-on papers.

NOTATION
P, 'I, 9 Gohner's coordinate system
r, tP, 9 T.E. coordinate system

T... T.. shear stresses (CT, =CT. =CT. =T,. =0) T.E. (abbreviation for toroidal elasticity)
IV T.E. displacement (u = v =0)
R toroidal radius
s rlR
p R + rcos tP
q I + s cos tP =piR
a radius of circular cross-section
c constant

<l> stress function
G shear modulus

M, PR twisting moment

INTRODUCTION

The twist of a ring sector is of practical interest in calculating stress fields in close-coiled helical
springs. The problem has been solved by several investigators [1-5]. A history of previous
solutions was discussed in the paper of Freiberger [5]. He uses toroidal coordinates in his
solution. Earlier, Gohner[I-3] also derived a solution using the method of successive ap
proximation. A compact account of his analysis appears in Timoshenko and Goodier[4].

Both solutions exhibit serious limitations. They cannot be readily extended to hollow ring
sectors of uniform cross-sections nor can they be readily extended to non-isotropic materials.
Both of these limitations can be overcome by introducing an appropriate new frame of
reference and generating displacements and stresses. This frame of reference leads to a fully
three-dimensional theory of elasticity which will be referred to as "toroidal elasticity" (or TE, for
brevity). Some of the methods of TE are generated in this paper,

The advantages claimed for TE are:

(I) The introduction of a method capable of extension to ring sectors of hollow circular
cross-sections (to be discussed in a separate paper).

(2) The introduction of a method capable of extension to non-isotropic ring sectors (to be
discussed in a separate paper).

(3) Simplification in algebraic details when compared to methods based on toroidal coor
dinates.

(4) A verification of the new compatibility equations which are required. It is to be noted
that numerical results for all three approaches (i.e. GBhner, Freiberger and Lang) should yield
the same values for stresses.
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HARMONIC OPERA TOR

The first step in the analysis is to obtain the harmonic operator vij in the (s, rP) system.
From Fig. 1, the equations connecting the two coordinate systems are

11 =' r sin ¢

p =' R +r cos rP = qR.

(1)

(2)

We introduce the operators

a J sin 4> J
L =R-=cos¢-----

q Jp as s a4>

a . J cos 4> aL =R-==sm¢-+---
1) JTI as s aq,

where s = rlR. Then the operator of Gohner transforms

where

The last expression on the right is required for the T.E. coordinate system.

(3)

THE EQUILIBRIUM EQU AnON

The stresses u" u"', UIJ and 1r", vanish. The displacements u and v also vanish. A single
equilibrium equation remains and assumes the form

a I 1 dT,p1J 2 .
-a TrlJ+-Trll+- J'" +-(TreCOScP-Tcjllism4»=O.

S S S 'I' q
(4)

p

"""/

"e

~------ R------~

~-+- p

P P, n, 8 • GoMer's coordinate system

r,4>8 • T.E coordinate system

Tr 9, T.9' Shear stresses (0', & 0'.,.. 0'8 & T,.· 0)
TE (abbreviation for toroidal elasticity)

Fig. 1. Ring sector under pure twist.



Pure twist of a solid circular ring sector

This equation is identically satisfied by introducing the stress function, q, such that

1 a<l>
T</>8 = --:!-.

q as
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(5)

(6)

In addition, it is noted that the boundary condition is particularly simple and reduces to YrB = 0
at r = a(or s = sa)'

COMPATIBLE EQUATIONS

The compatibility equations for the shear stresses TrB and T</>8 are:

V2T _ TrB _ 2 aT.8 + T.8sin.
I rB 7" ? aq, qs

--b [Tr8+3cos q,(cos l/JTrB - sin l/JT</>8)] = 0q

"iPT _~+l aTrB _!rB sin l/J
I </>8 S S2 al/J qs

--b [T</>8 +3 sin q,(sin l/JT</>8 - cos l/JTrB)] = O.q

(7)

(8)

Equations (7) and (8) were obtained by transforming the isotropic stress compatibility equations
(see [4], p. 232) from a rectangular coordinate frame to the reference frame (s, l/J, 8). Here
V~ = V5 +(IIq)Lq.

Guided by Gohner's solution, we confirm that the expression

is an identity. We apply it first to Y1= (lIs) (a<l>laq,) and then to Y2= - (a<l>las). The first
compatibility equation reduces to

(9)

the second compatibility equation reduces to

(10)

In effecting the transformations which lead to eqns (9) and (10), additional terms appear. These
terms are easily grouped in such a manner that they are identically zero.

The expression in the brackets is, therefore, a constant on the boundary of the circular
cross-section. We take the constant to be -2cR2 so the equation governing the stress function,
<I> is:

(11)

in complete agreement with Gohner.
The stress function is determined by writing the series
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and applying the method of successive approximations, where

V5<1>o +2cR 2 = 0

V1<1> - 3 a<l>o = 0
o \ aq

(12)

For the purposes of this paper, it is sufficient to restrict the series to four terms, <1>0 to <1>3.
Corresponding expressions can be developed for the two shear stresses. The shear stresses are
determined by the expressions

(13)

and by

(14)

THE STRESS FIELD (0)

The first stress function equation V5<1> 0 +2cR2 = 0 has the solution <1>0 = - (cR 2s2/2). The
stresses corresponding to <1>0 are (1..8)0 = GcRs (1r8)0 = O. Corresponding to the torsion of a
straight rod of circular cross-section.

THE STRESS FIELD (I)

Since (a<l>o/aq) =- cR 2 s cos 4> we have

The boundary condition is satisfied by adding the harmonic solution (3/8)cs~R2(S cos 4» to the
particular solution -(3/8)cR 3 cos 4> to obtain

The stresses corresponding to <1>1 are
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THE STRESS FIELD (2)

The next equation is: Viz =(3/4)cR 2S2 cos 4> +(9/8)cR2(s; - 52). To the particular solution,
we add the harmonic term

- S~CR2S2 cos 2tP
32

The final result is

generating the stresses

G [
5 2 5 2]+ cRs 16 S - 8 Sa

+OcRs cos2 4> [~ +i s~]

(Trl/)2 ~ ~ GCR(S2- s~ sin tP

+~ GcR(s~ - 52)S2 cos tP sin tP.

THE STRESS FIELD (3)

Since the method should be apparent, the next results are merely listed.

'" R2 (15 4 15 22 15 4)
':1') = C 5 cos <!J 512 s +512 5as - 256 5a

+ cR2 (li8 53) COS) tP(s~ - 52)

(Trl/)3 ~ ~ GCR(52
- s~ sin tP - ~ GcR cos 4> sin tPS(S2 - s~

15 GR' (2 4 2 2 4+512 c smtP Sa-SuS -s)

+ ~~~ GcR cos2 tP sin <!J(S2 - S;;'S2

(1'4>")3 = GcRs (1 + :6 S2 -i s~

+OcR cos A. (_ ~ 2 _ Z 2 + 595s;S2 _ 3955
4

)
<p 8 sa 8 s 512 512

+OcR cos2tPs (~2 +~ s~)

G R 3 2(185 2 1 2)
- C COS tPs 128 SII + 128 s •
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DETERMINATION OF THE CONSTANT, C

The constant, c, is determined by the condition that the shear stress on the cross-section
equates the resultant twisting moment Mt = PRo This condition is

For solutions (0) and (l), the result is
1Ta

4

Mt =PR =GCT= GcIp

so

GC=~.
1Ta

For solutions (2) and (3), the result is

so

2P 1
GC=-J ( 3 ).1Ta 2

Sa l+ 16 sa

Both results agree with Gohner's determination of c.

VERIFICATION OF AGREEMENT WITH GOHNER'S RESULTS

Gohner determined

If we form the same stresses from the equations

(TpO)) = (Tr/I») cos l/> - (T</>O)) sin q,

(T~o)) = (TrO») sin q, + (T</>o») cos q,.

the agreement is exact, as it must be.

THE DISPLACEMENT, w

The strain-displacement equations are

(15)

(16)

(17)
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(18)

These are difficult to use for the determination of the displacement, w. We revert to Gohner's
system to obtain e~6 = (ilw/a1/) which is easy to integrate. The first three displacement equations
are Wo = C1/(p - R)

5 C1/ ( 2 3 C (1/3 2 2)WI = Wo--- p- R) +-- -+ 1/(p- R) - a 1/
4 R 8R 3

I a2c I3c 3 3 C 3
W2 = WI +;rliz . (p - R)r, + 16RP1(P - R) -16 R2 1/ (p - R).

These could be rewritten in the (r, 4J) system using eqns (I) and (2). Since it is always simple to
pass from one coordinate frame to the other, the method used to determine W is frequently
useful. The displacement, w, now becomes (in the r, 4J system)

Wo = cR 2
(S2 sin 4J cos 4J)

WI = cR 2(S2 sin 4J cos 4J) - ~ cR2(ss;, sin 4J) +cR;S3 sin 4J

- cR2sJ sin 4J cos2 4J, etc.

Finally, er6 and e,pfl can be determined by differentiation only using eqn (17).

NUMERICAL RESULTS

The stresses (T,p6h and (Tr6h are determined for five values of afR (see Tables 1-3).
Along a diameter (4J = 0 or 180°), we have

(where the lower sign corresponds to 4J = 0).

Table I. Numerical values for if!R along horizontal diameter

-;ar

!~- 1
TO"

1.0 1.1354

0.75 1. 0617

0.50 0.5762

0.25 0.2931

0.0 0.0374

J~-
1
rn

LO 0.8820

0.50 0.4422

(~) at ¢ • 1800

~

1 1
5" 4"

1. 2992 1.3948

0.9408 0.9946

0.6361 0.6574

0.3364 0.3582

0.0744 0.0927

(-W) at ¢ = 00

~

1 1
5" 4"

0.7702 0.7132

0.3745 0.3590

1 1
"J 2

1.5773 2.0522

1.1119 1. 3056

0.7141 0.8348

0.3941 0.4670

0.1224 0.1672

1 1
~ '2"

0.6113 0.3645

0.3144 0.2286
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.:!H-
Table 2. Numerical values for 2PR along vertical diameter

rra J

(Ttl) at ¢: :: 900;;:;r

Table 3. Numerical values for 2~~ along vertical diameter

-:;Qf

(~) at if>: 900

~R- 1 1 1 1 1

~ a
TO 5" "4 :3 !

0 -0.3740 -0.3699 -0.3671 -0.3610 -0.3443

0.25 -0.3509 -0.3489 -0.3472 -0.3440 -0.3349

0.50 -0.2805 -0.2772 -0.27494 -0.2701 -0.2568

0.75 -0.1637 -0.1628 -0.16192 -0.1603 -0.1560

1.0 0 0 0 0 0

( 'Tr e reverses sign when if> = -900 or 2700 )

Along a vertical diameter (<!> = 90°), we have

Along a horizontal diameter (I/J = 0 or 180°), the stress Yr6 vanishes, but along a vertical
diameter

The sign of Tr{/ reverses for I/J = - 90°.

CONCLUSIONS

Figures 2-4 show the two shear stresses in dimensionless form, in particular, Fig. 2 indicates
the departure of the shear stress 1'4>6 from the linear variation associated with a straight twisted
solid circular shaft. These figures are drawn for three values of aiR = 1/2, 1/3, 1/5.

The tables and the figures, collectively, should enable stress engineers to extrapolate the two
stresses and the stress displacement, IV, to their own particular toroidal geometries.
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T4>8 <p 0 :900

(2PR)
JrO 3 1.0

Fig. 4. 2~R along vertical diameter.

'/Ta'

The methods and equations developed in this paper will be subsequently applied to the
related problem of twist of a ring sector where the cross-section is hollow.
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